NIL and R2R NIL for Fabricating Active Surfaces and Devices

Kenneth R. Carter Polymer Science & Engineering Department University of Massachusetts – Amherst

Agency for Science, Technology and Research

UMass NIL & R2RNIL Process Facility

- <u>Goal</u>: Enable fabrication of nanostructured materials and devices by a simple, rapid, high volume, cost-effective platform.
 - Leverage our expertise in NIL and nanoscopically ordered materials to fabricate a number of technologically useful materials and devices.
 - Fabrication being accomplished with materials & processes that can be moved rapidly towards commercialization (low-cost, high volume manufacturing).
 - Efforts include the development of functionalized materials to target specific electronic, mechanical and optical properties.

NIL & R2R NIL can benefit scale up of

- Flat panel displays
- Biomedical devices, microfluidics, membranes
- Flexible solar cells, OLEDs, printed electronics, DSA Lithography
- Antireflective, Anti-fog, Antibacterial, superhydrophobic / drag reduction etc.
- Photonics Polarizers, holographic patterns, metamaterials, optical filters etc EM sensing

UMass Nanoimprint Lithography Laboratory

Nanonex NX-2600BA 8" Wafer Nanoimprintor with Alignment and Photolithography

Trion Systems ICP Etch Tool

Hierarchical Manufacturing of Massachusetts Amherst

Nanonex NX-2000 Nanoimprinter

NX-2600BA: Full-Wafer Imprintor with Alignment and Photolithography

- Full-wafer (up to 8") nanoimprinting tool
- All forms of nanoimprint and high resolution photolithography
- Air Cushion Press (ACP) for ultimate nanoimprint uniformity
- Sub-micron overlay alignment accuracy and optical backside alignment
- Smart Sample Holder for handling different sizes and irregular shapes
- Applications in opto, displays, biotechnologies, data storage, materials, etc

New tool critical for fabrication of molds for R2R NIL!

Roll-to-Roll Test Bed Process Facilities

UV-Assisted Nanoimprint Lithography May 2011

70 nm grating

R2R Coater for Nanostructured Hybrids April 2012

Dual Microgravure

Slot Die

Unique R2R Tools Built with Qualified Partners

Structural Features Enables Function in Nature

- Nature used hierarchical patterns to accomplish many things. Many are ideal for nano/micro fabrication
- Superhydrophobicity

Water contact angle $\theta > 150^{\circ}$

Two factors for superhydrophobicity

- (1) Surface roughness
- (2) Low surface energy surfaces
- Goal: replicate hierarchically wrinkled patterns
- Develop R2R process for superhydrophobic surfaces

Soft Matter, 2012, 8, 11217

Roll-to-Roll Fabrication of Biomimetic Self-Cleaning Surfaces

- Fabrication of hierarchical wrinkle patterns
- Develop hydrophobic resin suitable for R2R process: modified Norland Optical Adhesives (NOA)
- R2R nanoimprint of hierarchical wrinkle patterns to achieve superhydrophobic surfaces (SHS) and lubricant imbibed surfaces (LIS)

Li, Y. Y.; Peterson, J. J.; Jhaveri, S. B.; Carter, K. R.*, Langmuir, 2013, 29(14), 4632-4639. DOI: 10.1021/la400155d

 Li, Y. Y.; Dai, S. John, J.; Carter, K. R.*, ACS Applied Materials and Interfaces, 2013, 5(21), 11066-11073.DOI: 10.1021/am403209r

٠

Li, Y.; John, J.; Kolewe, K. W.; Schiffman, J. D.; Carter, K. R.* ACS Applied Materials and Interfaces, **2015**, 7, 23439–23444. DOI: 10.1021/acsami.5b04957

Images of Fabricated Patterns

Li, Y.; John, J.; Kolewe, K. W.; Schiffman, J. D.; Carter, K. R.* ACS Applied Materials and Interfaces, **2015**, 7, 23439–23444. DOI: 10.1021/acsami.5b04957

Roll-to-Roll coating of PFPE Lubricant Imbibed Surface (SLIPS)

٠

Li, Y.; John, J.; Kolewe, K. W.; Schiffman, J. D.; Carter, K. R.* ACS Applied Materials and Interfaces, **2015**, 7, 23439–23444. DOI: 10.1021/acsami.5b04957

Comparison of Master Mold with R2R pattern

Wetting Behavior of SHS and SLIPS

Water on Superhydrophobic surfaces (SHS)

٠

Li, Y.; John, J.; Kolewe, K. W.; Schiffman, J. D.; Carter, K. R.* ACS Applied Materials and Interfaces, **2015**, 7, 23439–23444. DOI: 10.1021/acsami.5b04957

Antibacterial Properties of SHS and SLIPS

٠

Li, Y.; John, J.; Kolewe, K. W.; Schiffman, J. D.; Carter, K. R.* ACS Applied Materials and Interfaces, **2015**, 7, 23439–23444. DOI: 10.1021/acsami.5b04957

Block Copolymers

Block copolymers (BCPs)

- One class of self-assembling materials
- Attractive route to fabricate 10 100 nm scale structures
- Spontaneously assemble a range of well-defined, well-ordered structures including spheres, cylinders, gyroids, and lamellae

Application in Nanofabrication

Bit Patterned Media (BPM)

Hitachi Global Storage Technologies

Proc. IEEE, 96, 1836 (2008)

FinFET Device and Circuit Fabrication

Gate Fin Pitch Active fins 29mm-pitch DSA

ACS Nano, 8, 5227 (2014)

Lithographic Mask

Nat. Commun., 6:5963 (2015)

BCP Films with Topographic Patterns

Unpatterned Substrate

Deep Topographic Patterning

Short-range lateral order

Improving lateral order

Adv. Mater., 13, 1152 (2001)

Nat. Mater., 3, 823 (2004)

Nano Lett., 8, 2975 (2008)

Limitation of grain size

Overcoming BCP Grain Size Limitations

Chemical Patterning

Science, 321, 936 (2008)

Topographic with Chemical Patterning

ACS Nano, 4, 5181 (2010)

Minimal Topographic Patterning

Science, 323, 1030 (2009)

Shallow Trench

ACS Nano, 5, 2855 (2011)

Low Pillar

Overcoming BCP Grain Size Limitations

PS-b-PEO

L₁ = 26.8 nm, the domain spacing of hexagonally packed cylindrical microdomains in bulk

L₂ = 30.9 nm, center to center distance between cylindrical microdomains in bulk

Directed Self-assembly on Single Trench Pattern

Summary

- Long-range lateral order of hexagonal arrays were produced using minimal topographic patterns with thermal annealing
- Densities of 0.7 terabits/in² were achieved
- Highly oriented line patterns on minimal topographic patterns were obtained using solvent vapor annealing

Acknowledgements

Contributors:

- Dr. Jacob John
- Prof T. Russell (PSE)
- Prof. J. Schiffman (ChE)
- J. Nicholson (CHM Cleanroom)
- Jaewon Choi
- Yinyong Li
- Dr. Joseph Peterson
- Samsung Scholarship by Samsung Foundation

Grant No: CMMI-1025020

